36 research outputs found

    Distribution System Monitoring for Smart Power Grids with Distributed Generation Using Artificial Neural Networks

    Full text link
    The increasing number of distributed generators connected to distribution grids requires a reliable monitoring of such grids. Economic considerations prevent a full observation of distribution grids with direct measurements. First approaches using a limited number of measurements to monitor such grids exist, some of which use artificial neural networks (ANN). The current ANN-based approaches, however, are limited to static topologies, only estimate voltage magnitudes, do not work properly when confronted with a high amount of distributed generation and often yield inaccurate results. These strong limitations have prevented a true applicability of ANN for distribution grid monitoring. The objective of this paper is to overcome the limitations of existing approaches. We do that by presenting an ANN-based scheme, which advances the state-of-the-art in several ways: Our scheme can cope with a very low number of measurements, far less than is traditionally required by the state-of-the-art weighted least squares state estimation (WLS SE). It can estimate both voltage magnitudes and line loadings with high precision and includes different switching states as inputs. Our contribution consists of a method to generate useful training data by using a scenario generator and a number of hyperparameters that define the ANN architecture. Both can be used for different grids even with a high amount of distributed generation. Simulations are performed with an elaborate evaluation approach on a real distribution grid and a CIGRE benchmark grid both with a high amount of distributed generation from photovoltaics and wind energy converters. They demonstrate that the proposed ANN scheme clearly outperforms state-of-the-art ANN schemes and WLS SE under normal operating conditions and different situations such as gross measurement errors when comparing voltage magnitude and line magnitude estimation errors.Comment: 12 pages, 10 figures, 5 tables, preprin

    pandapower - an Open Source Python Tool for Convenient Modeling, Analysis and Optimization of Electric Power Systems

    Full text link
    pandapower is a Python based, BSD-licensed power system analysis tool aimed at automation of static and quasi-static analysis and optimization of balanced power systems. It provides power flow, optimal power flow, state estimation, topological graph searches and short circuit calculations according to IEC 60909. pandapower includes a Newton-Raphson power flow solver formerly based on PYPOWER, which has been accelerated with just-in-time compilation. Additional enhancements to the solver include the capability to model constant current loads, grids with multiple reference nodes and a connectivity check. The pandapower network model is based on electric elements, such as lines, two and three-winding transformers or ideal switches. All elements can be defined with nameplate parameters and are internally processed with equivalent circuit models, which have been validated against industry standard software tools. The tabular data structure used to define networks is based on the Python library pandas, which allows comfortable handling of input and output parameters. The implementation in Python makes pandapower easy to use and allows comfortable extension with third-party libraries. pandapower has been successfully applied in several grid studies as well as for educational purposes. A comprehensive, publicly available case-study demonstrates a possible application of pandapower in an automated time series calculation

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF
    corecore